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Abstract
Posttranslational modification of proteins by poly(ADP-ribosyl)ation regulates many cellular
pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis
and apoptosis1. Poly(ADP-ribose) (PAR) is composed of repeating ADP-ribose units linked via a
unique glycosidic ribose-ribose bond, and is synthesised from NAD by poly(ADP-ribose)
polymerases (PARPs)1,2. Poly(ADP-ribose) glycohydrolase (PARG) is the only protein capable of
specific hydrolysis of the ribose-ribose bonds present in PAR chains; its deficiency leads to cell
death3,4. Here we show that filamentous fungi and a number of bacteria possess a divergent form
of PARG that exhibits all the main characteristics of the human PARG enzyme. We present the
first PARG crystal structure (derived from the bacterium Thermomonospora curvata), which
reveals that the PARG catalytic domain is a distant member of the ubiquitous ADP-ribose-binding
macro domain family5,6. High resolution structures of T. curvata PARG in complexes with ADP-
ribose and the PARG inhibitor ADP-HPD, complemented by biochemical studies, allow us to
propose a model for PAR binding and catalysis by PARG. Our insights into the PARG structure
and catalytic mechanism should greatly improve our understanding of how PARG activity
controls reversible protein poly(ADP-ribosyl)ation and potentially of how the defects in this
regulation link to human disease.

While the mechanism and the functional aspects of poly(ADP-ribose) synthesis have been
extensively characterised, the present understanding of the PAR-degradation pathways
catalysed by PARG is comparatively poor. To date, the catalytic fold and the mechanism of
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PARG-mediated hydrolysis remain unknown. Our homology searches revealed that the
majority of fungal genomes lack close mammalian/canonical PARG homologues, but
instead possess a divergent PARG-like protein, annotated as DUF2263. DUF2263 protein
sequences contain the PARG signature (GGG-X6-8-QEE)7, which includes the previously
identified key residues: two consecutive glutamates7 (Fig. 1a, black asterisk) and a glycine8

(Fig. 1a, grey asterisk). In addition, a tyrosine residue (Fig. 1a, black cross) implicated in
binding to the PARG inhibitor ADP-HPD9 is also present in DUF2263. The DUF2263
orthologue is found also in other eukaryotes lacking canonical PARGs such as the rotifer
Adineta vaga (Fig. 1b), where it is fused to several copies of the poly(ADP-ribose)-binding
zinc finger10. As both filamentous fungi and A. vaga have functional PARP orthologues and
an active poly(ADP-ribose) metabolism11,12, we postulated that DUF2263 was likely to be a
functional PARG in these organisms. Surprisingly, although bacteria are historically thought
to be devoid of poly(ADP-ribose) metabolism, certain bacterial species possess both PARP
(closely related to PARP113) and DUF2263 genes, while some only contain the DUF2263
homologue (Fig. 1a, b). To analyse the biochemical activities of the corresponding bacterial
PARP and PARG proteins, we purified His6-tagged Herpetosiphon aurantiacus (HA) PARP
and DUF2263. HA PARP was able to synthesise poly(ADP-ribose) from NAD, as revealed
by antibodies recognising PAR (Fig. 1c) and by the analysis of PAR ladders using
sequencing gels (Supplementary Fig. 1). Analogous to the human PARP1 enzyme, HA
PARP was sensitive to the PARP inhibitor KU-0058948 and required DNA for its activation
(Fig. 1c). Strikingly, poly(ADP-ribosyl)ation produced by HA PARP is efficiently
hydrolysed by the HA DUF2263 protein, demonstrating that DUF2263 is a functional
PARG (Fig. 1c) and suggesting the presence of functional PAR metabolism in bacteria.

We extended our analyses to other bacterial and fungal PARGs (Fig 1a, b and
Supplementary Fig. 2) using established PAR substrates formed by the activity of the well-
characterised human PARP1 enzyme. Canonical human and Entamoeba dispar PARGs
served as controls. The in vitro activity of the purified PARG enzymes was evaluated in five
ways: (i) an assay which measures the loss of PAR from PARP1-modified histones; (ii) a
Western-blot analysis of the hydrolysis of PAR from the auto-modified human PARP1 using
anti-PAR antibodies; (iii) an SDS-PAGE analysis of the [32P]-PAR auto-modified human
PARP1; (iv) an analysis of the release of ADP-ribose from PAR either by thin-layer
chromatography (TLC), and (v) liquid chromatography-mass spectrometry (LC/MS) (Fig.
2a-d, Supplementary Fig. 4). The quantification of PAR hydrolysis by the PARG assay
shows that bacterial and fungal PARGs are highly active in hydrolysing PAR in vitro; their
catalytic potency is comparable to the E. dispar and human PARG enzymes (Fig. 2a).
Moreover, the mode of action of these proteins and mutant versions on poly(ADP-
ribosyl)ated PARP1 shows the same pattern observed for the canonical PARGs: (i) all are
inactivated by the mutation of a key glutamate residue (Fig. 2b, d), (ii) and by the treatment
with the PARG inhibitor ADP-HPD (Fig. 2c), and (iii) they are active on ribose-ribose
bonds between the two ADP-ribose units, but they are not efficient on mono(ADP-
ribosyl)ated protein substrates with the ADP-ribose unit linked directly to the PARP1 (Fig.
2c) or the PARP10 protein (Supplementary Fig. 3). Finally, TLC and LC/MS analyses
confirmed that the main product of DUF2263-type PARGs is ADP-ribose (Fig. 2d and
Supplementary Fig. 4). Collectively, these results demonstrate that bacterial and fungal
PARG proteins possess genuine PARG activity in vitro.

To test whether bacterial and fungal PARG proteins can act as PARGs in vivo, we used the
Saccharomyces cerevisiae system expressing human PARP114. Yeast cells, naturally
deficient in PAR metabolism, can readily express human PARP1, resulting in poly(ADP-
ribosyl)ation of various protein substrates14 (Fig. 2e). When divergent PARG proteins were
co-expressed with human PARP1, we observed that the poly(ADP-ribosyl)ation levels in
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yeast extracts diminished, indicating an efficient hydrolysis of PAR in vivo (Fig. 2e,
Supplementary Fig. 5).

Although the first PARG gene was cloned in 199715, to date there are no structural data
available for a PARG enzyme. To gain an insight into the PARG structure and mechanism,
we solved the T. curvata PARG ligand-free crystal structure to 1.5 Å in addition to ADP-
ribose- and ADP-HPD inhibitor-bound structures (Supplementary Table 1). Comparison
with available structures reveals that T. curvata PARG consists of an ADP-ribose-binding
macro domain fold with an N-terminal extension (residues 3-67, Fig. 3c). Similar macro
domain structures are found in the E. coli YmdB protein (1SPV, Z score 16.2, r.m.s.d. 2.1 Å
over 161 Cα atoms, 19% identity), an Archaeoglobus fulgidus macro domain protein
(2BFQ, Z score 15.6, r.m.s.d. 2.8 Å over 164 Cα atoms, 16% identity)5 and the histone
variant MACROH2A1.1 (1ZR3, Z score 15.0, 2.3 Å r.m.s.d. over 157 Cα atoms, 12%
identity)16. The diphosphate-binding loop that flanks one side of the ADP-ribose binding
cavity is highly conserved between PARG and other macro domain structures (in magenta,
Fig. 3a, c). In contrast, the opposite side of the PARG ADP-ribose binding cavity is lined by
a stretch of amino acids corresponding to the PARG-specific GGG-X6–8-QEE signature
sequence7 (in yellow, Fig. 3a-c). The structural alignment reveals this PARG-specific loop is
inserted into the macro domain fold to accommodate the Glu115 side chain that projects into
the PARG active site (Fig. 3c, d). Due to the PARG-specific loop, it appears that only
PARGs but not other macro domain proteins can hydrolyse PAR (Supplementary Fig. 6).

The ligand-PARG complex structures reveal that ADP-α-ribose occupies a position similar
to that observed in other ADP-ribose-macro domain complex structures5 (Fig. 3d and
Supplementary Fig. 7). A minor rearrangement can be observed for Val226-Phe227 upon
ADP-ribose binding. The Phe227 side chain is in close contact with the ribose” moiety of
ADP-ribose, ensuring a close distance between the ribose” O4 and one of the phosphate
groups within the constraints of the active site. The ribose” moiety also forms hydrogen
bonds with Glu114 (via the 2′-OH group) and Glu115 (via the 1′-OH group) (Fig. 3d). With
the exception of water-mediated polar contacts, few direct contacts can be observed with the
adenosine moiety. In contrast to the ribose” moiety, the adenosine ribose’ moiety is
significantly less accessible. The presence of any substituents on the ribose’ 2′-OH group
(such as another ADP-ribose) would require a drastic reorientation of the PARG C-terminal
α-helix (see Fig. 4a) with concomitant exposure of the hydrophobic core of the macro
domain. This suggests that bacterial PARG binds the PAR terminus and acts as an exo-
glycohydrolase.

The steric restraints imposed by the PARG active site form a basis for the modelling of an
α(1″→2′) O-glycosidic linkage with an additional ADP-ribose group to provide further
insight into PAR binding (Fig. 4a, b). Our models suggest that the (n-1) adenine moiety is
partially enclosed by Ala110, Ala112 and Val226 while the (n-1) ribose’ is in close contact
with Ser98 and Gly104 (Fig. 4b). However, MD simulations suggest that the enzyme lacks
any obvious binding sites for the (n-1) phosphate and ribose” moieties, as exemplified by
significant conformational freedom of the latter with respect to the terminal ADP-ribose and
the associated (n-1) ribose’. This suggests that bacterial PARG does not specifically bind
additional PAR elements.

The T. curvata PARG complex with ADP-ribose (Fig. 3d) and the corresponding PAR-
PARG model (Fig. 4b) allow us to propose a mechanism for PARG catalysis (Fig. 4c).
Binding of the PAR terminus positions the key ribose-ribose O-glycosidic linkage in direct
hydrogen bonding contact with Glu115, while constraining the conformation of the terminal
ribose”. Formation of a putative oxocarbenium intermediate is supported by the protonation
of the (n-1) PAR ribose’ 2′-OH leaving group via Glu115, and by the stabilization of the
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positively charged oxocarbenium through close proximity with the terminal diphosphate
group. A water molecule is ideally positioned to attack the oxocarbenium intermediate,
activated through concomitant deprotonation by Glu115. This leads to the release of ADP-β-
ribose” and (n-1) PAR.

This mechanism is supported by mutagenesis and binding studies. Although mutations of
both Glu114 and Glu115 render the enzyme inactive without disruption to the overall PARG
fold (Fig. 4d, Supplementary Fig. 8), ITC ADP-ribose binding studies reveal that Glu115A
does not affect binding, while Glu114A leads to an approximate 10-fold decrease in binding
affinity (Supplementary Fig. 9). This supports the notion that the role of Glu114 is confined
to substrate binding/orientation as opposed to the acid-base catalysis proposed for Glu115.
The mutation of Phe227 implicated in positioning the terminal ribose” also renders the
enzyme inactive (Fig. 4d). Mutations of Ser98 and Val226, implicated by our model in
binding the (n-1) ADP-ribose, greatly diminish T. curvata PARG activity (Fig. 4d).
Importantly, mutations of the corresponding catalytic residues in the human PARG have a
similar effect on the enzymatic activity, which suggests a universal catalytic mechanism for
bacterial and mammalian PARGs (Fig. 4d).

These data provide the first insight into PARG structure and mechanism, and improve our
understanding of the biochemical strategies regulating reversible poly(ADP-ribosyl)ation.
Our results define existence of bacterial PAR metabolism and show that PARG is a new
member of the widespread macro domain protein family5,6, which is known to be implicated
in genome stability and regulated by poly(ADP-ribosyl)ation17-19. Our data confirm that
PARGs are evolutionary unrelated to ARH3 proteins, another class of enzymes with the
ability to cleave PAR20,21 (Supplementary Information). We believe that our findings will
provide the groundwork for future studies that might ultimately lead to the development of
small, cell-permeable PARG inhibitors and the potential to manipulate physiology of health
and disease by interfering with PAR metabolism.

METHODS SUMMARY
Proteins with His6-tags were purified from E. coli. A colorimetric PARG Assay Kit
(Trevigen) was used to measure the loss of biotinylated PAR from histones. Auto-modified
poly(ADP-ribosyl)ated human and bacterial PARP substrates were made by incubation with
NAD10. In vivo activity of PARGs was tested in a yeast system with inducible expression of
human PARP1. The T. curvata PARG structure was solved by means of single-wavelength
anomalous diffraction on Pt-soaked crystals. Ligand-enzyme complexes were obtained by
the soaking of PARG crystals. The PAR-PARG model was created using MD simulations of
the ADP-α-ribose dimer in complex with PARG.

METHODS
Plasmids and proteins

Bacterial and fungal PARG proteins and the E. dispar PARG were expressed from the
pET28a vector (Novagen). Human PARG with an N-terminal truncation (Δ1-455) was
expressed from the pColdTF vector (Takara). The A. fumigatus Af293 gene
(AFUA_4G11940), the D. radiodurans R1 ATCC13939 gene (DR_B0099) and the E. dispar
SAW760 gene (EDI_110590) were amplified from genomic DNA, the human PARP1 and
PARG gene (Q86W56) were amplified from HeLa cDNA, while the T. curvata DSM 43183
gene (Tcur_1721) and the A. variabilis ATCC 29413 gene (Ava_4013) were synthesised
according to the database sequence (GenScript USA Inc.). The H. aurantiacus ATCC 23779
PARG (Haur_1618) and PARP (Haur_4763) genes were amplified from genomic DNA
extracted from a dried culture purchased from DSMZ. All proteins bear an N-terminal his
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tag with the exception of the A. variabilis PARG, which has a C-terminal his tag. Mutations
were introduced using the QuickChange II site-directed mutagenesis kit (Stratagene).
Proteins were expressed in E. coli Rosetta2(DE3) cells (Novagen). Recombinant proteins
were purified on Ni-NTA beads according to standard procedure. For crystallisation studies,
the T. curvata PARG was purified by FPLC on a HisTrap HP column followed by Superdex
200 (GE Healthcare). The catalytic fragment of human PARP10 (amino acids 818–1025)
was expressed as a GST-tagged protein and purified on Glutathione Sepharose columns.

PARP activity assay
PARP auto-modification activity of the recombinant H. aurantiacus (HA) PARP was
assayed in a 30-minute room-temperature reaction containing 100 nM HA PARP, 200 μM
NAD (Trevigen), 50 mM Tris pH 7.5 and 50 mM NaCl with or without activated DNA
(Trevigen), and with or without the PARP inhibitor KU-0058948 (10 μM). After the
reactions were stopped with the PARP inhibitor, 500 nM HA PARG and its catalytic
glutamate mutants were added to the reaction for 30 min. The reactions were analysed by
Western blotting with rabbit anti-PAR antibodies as described under ‘PARG activity
assays’.

PARG activity assays
PARG activity of recombinant proteins was quantified with a colorimetric PARG assay kit
(Trevigen), which measured the loss of biotinylated PAR from histones generated by
PARP1. 3 nM PARG enzymes were used for this assay. For Western-blot analysis of PARG
activity, poly(ADP-ribose) was synthesised by the automodification of PARP1 in a reaction
mixture containing 2 units of PARP1 (Trevigen), 200 μM NAD (Trevigen), activated DNA
(Trevigen), 50 mM Tris pH 7.5 and 50 mM NaCl at room temperature. Reactions were
stopped after 30 min by the addition of the PARP inhibitor KU-0058948. 500 nM PARGs
were added to the reaction and incubated for another 30 min. The reactions were run on
4-12% SDS-PAGE gels and blotted onto a nitrocellulose membrane. PAR hydrolysis was
detected by rabbit polyclonal anti-PAR antibodies (1:1000; Trevigen). Western blots were
analysed densitometrically by GeneTools (SynGene). For a direct visualisation of PARG
activity via SDS-PAGE, [32P]-labelled NAD (GE Healthcare) was added to the above
reaction to generate radioactively labelled poly(ADP-ribosyl)ated or mono(ADP-
ribosyl)ated PARP substrates. 500 nM PARGs were subsequently added with or without the
PARG inhibitor ADP-HPD (50 μM). The reaction products were analysed by SDS-PAGE
and visualised by autoradiography. For thin layer chromatography (TLC) analysis, the
reactions were stopped by the addition of 50 mM ADP-ribose, spotted onto
polyethyleneimine (PEI)-cellulose plates (Macherey-Nagel, Polygram CEL 300 PEI/UV254)
and developed in 0.15 M LiCl and 0.15 M formic acid. Dried plates were exposed on X-ray
film or visualised by UV254 shadowing.

Expression of heterologous proteins in S. cerevisiae
Plasmids used to introduce human PARP1, A. fumigatus PARG and D. radiodurans PARG
into S. cerevisiae were created via the Gateway (Invitrogen) site-specific recombination
system using yeast-specific destination vectors (Addgene)22. hPARP1 was introduced into
pAG303GAL-ccdB (HIS3), while AF PARG and DR PARG were introduced into
pAG423GAL-ccdB (URA3). The host strain W303-1a (MATa, ade2-1, ura3-1, his3-11,15,
trp1-1, leu2-3,112, can1-100) was grown in rich YPD medium at 30°C. The strain was first
transformed with the hPARP1-harboring plasmid resulting in his+ transformants with
chromosomally integrated hPARP1. Subsequent transformation with the PARG-harboring
plasmids yielded his+ura+ transformants with episomally maintained PARG. To induce the
expression of PARP1 and PARG from the GAL1 promoter, the strains were grown
overnight in minimal SC medium with 2% glucose. The overnight cultures were washed,
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resuspended in SC+2% raffinose at 7×106 cells/ml and grown for one cell generation. Cells
were centrifuged before resuspending in SC+2% galactose medium and grown overnight to
induce the expression of hPARP1 and PARG from the GAL1 promoter. Yeast protein
extracts were analysed by immunoblotting. Rabbit polyclonal anti-PAR antibody (Trevigen)
and rabbit anti-PARP1 antibody (Abcam) were used at 1:1000 dilution, while rat
monoclonal anti-alpha-tubulin antibody (Abcam) was used at 1:5000 dilution. Rabbit anti-
DRPARG and anti-AFPARG polyclonal antibodies were raised against the respective full-
length proteins purified from E. coli (Eurogentec) and applied at 1:1000 dilution.

Crystallisation, refinement and model building
Initial T. curvata PARG crystallisation conditions were identified using the JCSG+ matrix
screen (Molecular dimensions). Crystals suitable for diffraction experiments were obtained
by sitting drop vapour diffusion in 4 μL drops containing equal volumes of protein and a
solution containing 10% PEG 6K and 0.1 M Bicine buffer (pH 9.0). The crystals were
derivatised by soaking with the same solution supplemented with 1 mM potassium
tetracyanoplatinate (II) trihydrate for 10 minutes. For the ADP-ribose and ADP-HPD
complexes, native crystals were soaked with 1 mM ligand for 1-2 hrs. The crystals were
cryoprotected with the addition of 15% PEG 200 to the mother liquor and flash cooled in
liquid nitrogen. Data was collected on beamline I04 at the Diamond Light Source Facility
and reduced and scaled with the X-ray Detector Software suite (XDS)23.

The ligand-free PARG crystal structure was determined by single-wavelength anomalous
diffraction on a Pt-soaked crystal using Solve and Resolve as implemented in Phenix24. The
initial electron density map was of sufficient quality for Resolve to build 70% of the model.
Further automated model building with ARPwARP25 successfully constructed the entire
model, with the exception of a small loop region incorporating residues 58-66, for which no
corresponding density could be observed. The model was completed by iterative cycles of
manual model building and real space refinement using the program Coot26 and
crystallographic refinement using Phenix.refine24. Validation of the structure was performed
with Molprobity. The processing, phasing and final refinement statistics are presented in
Supplementary Table 1.

Isothermal Titration Calorimetry
The thermodynamic ligand binding properties of wild-type T. curvata and two mutant
proteins (E114A and E115A) were measured using a VP-ITC microcalorimeter. Protein and
ligand concentrations were 20 μM and 200 μM respectively in 50 mM Tris (pH 7.5), 100
mM NaCl. Titration curves were fitted using a non-linear least squares method in Microcal
Origin software. A model that was indicative of a single binding site was found to give the
best fit in each case; this model was used to obtain the thermodynamic parameters shown in
Supplementary Fig. 9.

Thermal shift assay
In each 50 μL reaction 15 μL of 300× Sypro Orange (Sigma), 2 μL of water and 33 μL of
protein (4 mg/ml) in 25 mm Tris pH 7.5, 50 mM NaCL, 10% glycerol and 1 mM DTT were
added to the wells of a 96-well thin-wall PCR plate (Bio-Rad). For thermal shift assays in
the presence of ADP-ribose, 2 μL of 25 mM ADP-ribose was added instead of water.
Samples were placed in a CFX96 Real Time PCR thermal cycler (Bio-Rad) and slowly
heated from 15 to 95 °C with sample fluorescence recorded every 0.2 °C. Fluorescence was
monitored at 575 nm (emission), using 490 nm for excitation.
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Analysis of poly(ADP-ribose) chains by sequencing gels
[32P]-labelled poly(ADP-ribose) chains produced by PARPs were resolved in 10%
sequencing gels in TBE buffer. Reactions were stopped by the addition of 600uL 20% ice-
cold trichloroacetic acid (TCA). The precipitated material was washed twice with 5% TCA.
The pellet was then incubated with 70 μL of 10 mM Tris and 1mM EDTA buffer (pH 12)
for 2 hours at 60 oC to detach PAR chains. PAR was phenol-chloroform extracted, dried and
resuspended in 2 mM EDTA-formamide buffer before loading. The products were
visualised by autoradiography.

Computational simulations
NAMD software1 was used to perform all molecular dynamics (MD) simulations of the
ADP-α-ribose dimer in complex with PARG. The topology and parameters files for the
ligand were obtained using the Antechamber program2 and AM1-BCC charges3. The
additional ADP-α-ribose monomer was added to the ADP- α -ribose bound to PARG by
creating an α (1″→2′) O-glycosidic bond. Five conformers of the added monomer were
taken as starting points for MD simulations. The PARG:ADP-α-ribose dimer complex
model was then immersed in a periodic water box (TIP3), as half of the ligand was in
contact with the bulk solvent. Then, for each conformer, several simulations (0.5 ns) were
run with variable parameters (200 K or 310 K, peptidic backbone fixed, restrained or free).
During these MD simulations, snapshots (100 in total for clarity) were periodically extracted
and energy-minimized, to represent the conformational flexibility of the ADP-α-ribose
dimer.

Analyses by ultrahigh-performance liquid chromatography (UHPLC) coupled to quadruple-
time-of-flight mass spectrometry (QTOFMS)

The poly(ADP-ribosyl)ated PARP1 was treated with T. curvata PARG, and the mixture was
filtered using centricons (30 kD cutoff). The analysis of the filtrate was performed using a
modified procedure by Coulier et al.4, which employed ion-pair chromatography for the
separation of nucleotides and negative electrospray ionization for mass spectrometric
detection. All analyses were performed using a Waters Acquity UPLC system (Waters
Corp., Milford, MA, USA), equipped with a binary solvent delivery system and
autosampler. The chromatographic separations employed a column (50 mm × 2.1 mm) filled
with a 1.7 μm BEH C18 stationary phase (Waters Corp., Milford, MA, USA). Binary
gradients at a flow rate of 0.4 mL/min were applied for the elution. The eluent A was water
containing 5 mmol/L of pentylamine, while the pH value was adjusted to 6.5 using acetic
acid. A fast elution gradient was applied, which allowed an efficient separation of NAD+
and ADP-ribose within 5 min. The gradient started at 2 % B and then the percentage of B
linearly increased to 25 % in 5 min.

The mass spectrometry was performed on a QTOF Premier instrument (Waters Micromass,
Manchester, UK) using an orthogonal Z-spray-electrospray interface. The drying gas and the
nebulizing gas was nitrogen. The desolvation gas flow was set to 700 L/h at a temperature of
300 °C. The cone gas flow was adjusted to 25 L/h, and the source temperature to 120 °C.
The capillary and cone voltages were 3200 V and 30 V respectively. The instrument was
operated in V mode with TOFMS data being collected between m/z 100–1000, applying a
collision energy of 4 eV. All spectra were recorded using the extended dynamic range
(DRE) option in order to correct for possible peak saturations, the data were collected in the
centroid mode with a scan time of 0.08 s and interscan time of 0.02 s. In order to ensure
maximum accuracy and reproducibility of the system, all acquisitions were carried out using
an independent reference spray via the lock spray interface. Leucine enkephalin was applied
as a lock mass in negative ionization mode (m/z 554.2615).
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The chromatograms, recorded in the total ion current (TIC) mode, were systematically
examined by manually generating mass spectra of each visible individual peak using the
background-subtraction option and searching for target components expected to occur in the
mixture, in particular ADP-ribose and NAD+, using extracted ion chromatograms. The
target analyses were based on the accurate mass feature of the instrument, applying a mass
window of 50 mDa. Elemental composition of the selected ions was calculated using the
MassLynx software incorporated in the instrument. The main criterion for selecting the
elements to be included in search parameters for the calculation of the molecular formula
was the elemental composition of the presumed parent compounds. According to the
instrument specifications, the acceptable deviation from the theoretical m/z values was set at
5 mDa.
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Figure 1. Phylogeny and functional relationship between DUF2263 and canonical-type PARGs
a, Multiple sequence alignment of different DUF2263 and PARG proteins from
Thermomonospora curvata (Tcu), Herpetosiphon aurantiacus (Hau), Deinococcus
radiodurans (Dra), Aspergillus fumigatus (Afu), Homo sapiens (Hsa), Bos taurus (Bta) and
Entamoeba dispar (Edi). The two catalytic glutamates, a conserved glycine and tyrosine are
marked with black asterisks, grey asterisk and black cross respectively. Secondary structure
elements from the Tcu PARG structure are indicated above. b, YmdB-rooted phylogenetic
tree of PARGs implied by the neighbour-joining method. Organisms devoid of PARP are
marked in grey. c, H. aurantiacus (HA) PARP and PARG enzymes are active as shown by
Western blotting with anti-PAR antibodies.
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Figure 2. Poly(ADP-ribose) hydrolytic activities of divergent and canonical PARGs
a, A colorimetric PARG assay. b, Analysis of the hydrolysis of the PARP1-generated PAR
substrate by anti-PAR antibodies ‘AF’ stands for A. fumigatus; ‘DR’ D. radiodurans; ‘HA’
H. aurantiacus; ‘TC’ T. curvata; ‘AV’ A. variabilis; ‘HS’ H. sapiens; ‘ED’ E. dispar. c,
SDS-PAGE-based assay with [32P]-automodified PARP1 substrate. PARGs are inhibited by
ADP-HPD. d, TLC analysis of PARG activity on the [32P]-PAR substrate. The right side of
the TLC plate was visualised by shadowing under UV. e, Heterologously expressed A.
fumigatus and D. radiodurans PARG hydrolyse PAR in hPARP1-expressing budding yeast
cells.
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Figure 3. T. curvata PARG crystal structure in complex with ADP-ribose
a, b, Overall fold of PARG with α-helices depicted in red, β-sheets in blue and bound ADP-
ribose in green spheres. The PARG-specific catalytic loop is shown in yellow, and the
diphosphate-binding loop in magenta. c, Overlay of the T. curvata PARG structure with a
representative macro domain structure (PDB code 2BFQ, in cyan). The PARG-specific N-
terminal extension and additional PARG structural elements are highlighted in red.
Structural features that are similar to 2BFQ and other macro domains are shown in gray. d,
Detailed view of ADP-ribose bound in the PARG active site. ADP-ribose is shown with the
corresponding 2Fo-Fc omit-map density contoured at 1.2 σ in blue. Key active site residues
are represented in atom coloured sticks with hydrogen bonds indicated by black dotted lines.
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Figure 4. Structural basis of poly(ADP-ribose) glycohydrolysis
a, The PARG solvent accessible surface derived from molecular dynamic simulations b, A
detailed view of the lowest energy PARG:ADP-ribose-dimer model obtained from the 100
snapshot structures. Key active site residues are highlighted in green with PAR structural
elements coloured as in 4a. c, Proposed mechanism for PAR glycohydrolysis. R1 and R2
represent (n-1) PAR and terminal adenosine moieties respectively. d, PARG activities of the
T. curvata PARG mutants and the corresponding H. sapiens PARG mutants. Error bars
represent s.d. (n=3).
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